
Teaching Digital Signal Processing on Smartphones: 

A Mobile DSP Laboratory 

 
Nasser Kehtarnavaz and Shane Parris 

Department of Electrical Engineering, University of Texas at Dallas, USA 
kehtar@utdallas.edu 

 
 

Abstract 
 
This show and tell provides an interactive demo of a 

newly developed educational paradigm for teaching 

applied or real-time digital signal processing courses. 

It involves the utilization of smartphones to implement 

digital signal processing algorithms in real-time using 

ARM processors of smartphones. Such a paradigm is 

exhibited to be a cost-free mobile laboratory. 

Attendees will be given the option of downloading one 

of the experiments as an app and running it on their 

own smartphones. 

 

1. Introduction and motivation 
 

Applied or real-time digital signal processing 
courses offered at many universities have greatly 
enhanced students' learning of signal processing 
concepts by covering practical aspects of 
implementing signal processing algorithms. DSP 
processor boards are often deployed in these courses. 
A number of textbooks are available discussing how to 
implement signal processing algorithms on DSP 
boards, e.g. [1-3]. In this show and tell, we present an 
alternative hardware platform which students can use 
right away as it is already in their possession, that 
being their own smartphones! 

Not only do there exist hardware and software 
costs associated with equipping a teaching laboratory 
with DSP or other types of boards, in many cases these 
boards are confined to a specific teaching laboratory 
location. Taking advantage of the ubiquitous 
utilization of ARM processors in mobile devices, in 
particular smartphones, we have developed an 
alternative approach to teaching applied or real-time 
DSP courses by enabling students to use their own 
smartphones to implement digital signal processing 
algorithms. Changing the hardware platforms that are 
currently used for applied or real-time signal 
processing courses to smartphones creates a truly 
mobile laboratory experience or environment for 

students. The software development tools for 
smartphones are free of charge and are well-
developed. The total cost of the currently used DSP 
boards ranges from $100 to $500 per unit when the 
costs associated with peripherals and software tools 
needed for these boards are factored in. In contrast, 
this newly developed teaching paradigm provides 
clear advantages over the existing approaches in terms 
of both cost and mobility. 
 

2. Smartphone implementation 
 

In this show and tell, we will demonstrate the 
algorithms associated with a typical applied or real-
time DSP course running on a smartphone. The main 
challenge in this approach has been the difference 
between the programming environments on 
smartphones and C programming, which signal 
processing students are normally familiar with. We 
have met this challenge by developing the required 
software shells to run C codes on smartphones so that 
the only prerequisite programming knowledge 
students need to have is C programming. In other 
words, the programming knowledge expected from 
students is no different than many existing applied or 
real-time DSP courses. This newly developed teaching 
paradigm allows students to implement signal 
processing algorithms that are written in C on their 
own smartphones. Also, students get to experiment 
with real-time and optimization aspects of running C 
codes efficiently on ARM processors. 
 

2.1 Development environment 
 

To allow C codes to be written and compiled on 
smartphone targets, we have utilized the following 
cost-free downloadable development tools: Android 
Development Tools Bundle (ADT Bundle) [4], 
Android Native Development Kit (Android NDK) [5] 
and the ARM DS-5 Community Edition plug-in [6]. 

 



The ADT Bundle provides a comprehensive 
development environment incorporating the Eclipse 
integrated development environment (IDE), plug-ins, 
and an emulator. The NDK tool provides the support 
for incorporating C/C++ codes within the ADT. The 
ARM DS-5 Community Edition plug-in provides 
debugging capabilities for C codes. 
 

3. Laboratory experiments 
 

The laboratory experiments that are included in a 
typical applied or real-time signal processing course 
include: signal sampling and I/O buffering, FIR 
filtering, IIR filtering, adaptive filtering, quantization 
and roundoff errors, fixed-point versus floating-point 
implementation, DFT/FFT frequency transformation, 
and optimization techniques to gain computational 
efficiency. These experiments will be demoed during 
this show and tell. To provide a better idea of the 
demos, three of the experiments are described in more 
details in the next section. Attendees can bring their 
own smartphones (Android operating system not older 
than two years) and we will let them run and 
experiment with one of the experiments as an app on 
their own smartphones. In essence, this interactive 
show and tell will present for the first time a 
smartphone-based laboratory for teaching applied or 
real-time digital signal processing courses. 
 

4. Representative demos 
 

Three representative laboratory experiments that 
will be demoed are described in more detail in this 
section. A video clip of a sample demo can be viewed 
at http://www.utdallas.edu/~kehtar/ShowTell.mp4. 
 

4.1 Real-time filtering demo 
 

This demo involves processing a frame of signal 
samples captured by the smartphone microphone. 
Figure 1 illustrates a snapshot of the smartphone 
running screen where processing times of frames are 
displayed. The frame length can be altered by the user 
through a graphical-user-interface (GUI) settings 
menu, shown in Figure 2. The sampling rate can also 
be altered depending on the sampling rates permitted 
by the A/D converter of the smartphone. In the 
smartphone model to be demoed, the sampling rate 
can be altered from 8 kHz to 48 kHz. Thus, any 
processing of one frame of data needs to be done in 
less than N*dt sec in order to achieve a real-time 
throughput, where N denotes the frame length and dt 

the sampling time interval. For example, for a 
sampling rate of 8 kHz and a frame length of 256, the 
processing needs to be completed within 32msec in 

order for all the frames to get processed without any 
frames getting skipped. 

A low-pass FIR filter together with a user 
specified delay are considered to act as the signal 
processing algorithm running on the ARM processor 
of the smartphone. The delay can be changed by the 
user through the GUI settings menu, adding additional 
processing time to the low-pass filtering time. By 
increasing the sampling frequency or lowering the 
sampling time interval, data frames will get skipped 
and hence a real-time throughput cannot be met. 
Besides skipped frames noted on the GUI, one can 
hear both the original signal and the filtered signal 
through the speaker of the smartphone and notice the 
distortion caused by increasing the sampling 
frequency due to the real-time demand. Distortion can 
also be experienced by increasing the processing time 
delay. This demo provides the option of reading data 
from an audio file or receiving audio data from the 
microphone, as well as writing data to an audio file or 
outputting audio data through the speaker. 
 

4.2 Quantization effect demo 
 

In this demo, the quantization effect is exhibited. 
The demo involves running an FIR filter on the 
smartphone using fixed-point arithmetic. 16 bits are 
used to quantize the double precision floating-point 
filter coefficients generated by filter design packages. 
Due to quantization, the frequency response of the 
filter gets affected. The quantization word length can 
be adjusted in the settings menu and the deviation of 
the frequency response magnitude can be observed in 
a pop-up graph, shown in Figure 3. The settings menu 
allows the user to alter the quantization bits to 
examine the deviation of the frequency response from 
the frequency response of the floating-point 
implementation. In addition, due to quantization, 
overflows may occur depending on the number of 
coefficients. This demo shows how scaling can be 
used to overcome overflows by scaling down input 
samples and scaling back up output samples generated 
by the filter. 
 

4.3 Adaptive filter demo 
 

This demo exhibits adaptive filtering. An adaptive 
FIR filter based on the least mean squares (LMS) 
coefficient update algorithm is implemented to match 
the output of an IIR filter. Figure 4 illustrates the error 
between the output of the adaptive FIR filter and the 
IIR filter for a square wave input signal displayed on 
the smartphone screen. Over time the error between 
the two outputs diminishes towards zero. 



The user can experiment with the rate of 
convergence by altering the adaptive filter order 
through the settings menu without needing to 
recompile the code. As the filter order is increased, it 
can be observed that the convergence rate also 
increases. The drawback of increasing the filter order, 
which is an increase in the processing time, can also 
be observed. The demo allows establishing a tradeoff 
between convergence rate and real-time throughput. 
 

5. Conclusion 
 
This show and tell exhibits how smartphones can be 
used as the target platform for teaching applied or real-
time digital signal processing courses. This alternative 
approach to the currently utilized DSP boards is cost-
free and provides a truly mobile laboratory experience  
 
 

for students. A textbook is being written by the 
authors discussing the details of this alternative 
approach which is planned to be completed by the year 
end. 
 

6. References 
 
[1] N. Kehtarnavaz, Real-time Digital Signal Processing 

Based on the TMS320C6000, Elsevier, 2005. 

[2] T. Welch, C. Wright, and M. Murrow, Real-Time 
Digital Signal Processing from MATLAB to C with the 
TMS320C6x DSPs, CRC Press, 2011. 

[3] S. Kuo and B. Lee, Real-Time Digital Signal 
Processors: Implementations, Applications and Experiments 
with the TMS320C55x, Wiley, 2001.  
[4] http://developer.android.com/sdk/index.html 

[5] http://developer.android.com/tools/sdk/ndk/index.html 

[6] http://ds.arm.com/ds-5-community-edition/ 

 

Figure 1. Real-time filtering 
demo: running screen 

Figure 2. Real-time filtering 
demo: settings interface 

Figure 3. Quantization demo: 
frequency response graph 

Figure 4. Adaptive filter demo: error versus iterations 


